Original Article

Study on Oxidative Stress in Thalassemic Red Blood Cells

Pornvaree Lamchiagdhase, Sineewanlaya Wichit, Suriya Ngampreadprink, Surada Lerdwana* and Kovit Pattanapanyasat*

Department of Clinical Microscopy, Faculty of Medical Technology; *Center of Excellence for Flow Cytometry, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand

Abstract: Thalassemia red blood cells (RBCs) are susceptible to oxidative stress, which play a major role in hemolysis. In order to evaluate the oxidative stress in RBCs, we measured the mean fluorescent intensity of dichlorofluorescein (DCF) in RBCs after incubation either with or without 2 mM H$_2$O$_2$ by flow cytometry. The subjects were 20 healthy adults, 10 α-thalassemia or Hemoglobin (Hb) H patients, 12 un-splenectomized and 11 splenectomized β-thal/Hb E patients. For unoxidized RBCs, significantly higher fluorescent intensity of DCF were observed in thalassemic RBCs, especially in Hb H disease (10.5±7.0), when compared with healthy subjects (2.2±0.4) (p < 0.001), un-splenectomized β-thal/Hb E (4.0±1.5) (p = 0.008), but no statistical significant difference was found when compared with splenectomized β-thal/Hb E (7.1±3.8) (p > 0.05). Flow cytometric analysis of H$_2$O$_2$ - oxidized RBCs in all groups showed significantly higher DCF intensity than unoxidized RBCs (p < 0.001). The H$_2$O$_2$ - oxidized RBCs of Hb H disease (300.1±191.2) were higher than un-splenectomized (56.8±50.4) and splenectomized β-thal/Hb E (79.2±51.7) (p < 0.001, 0.005, respectively). There were no significant difference between un-splenectomized and splenectomized β-thal/Hb E (p > 0.05). These findings suggest that there are higher oxidative stress in thalassemic RBCs than healthy subjects and Hb H RBCs seem to have higher oxidative stress than β-thal/Hb E.

Key Words: Oxidative stress Thalassemia Flow cytometry

Received August 11, 2003. Accepted October 1, 2003. Requests for reprints should be addressed to Miss Pornvaree Lamchiagdhase, Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.

Thalassemia (thal) is a genetic disorders caused by a partial or complete deficiency of α- or β-globin chain synthesis. In Thailand, α- and β-thalassemia and abnormal Hb E are common. The pathophysiology of diseases related to the degree of anemia is caused by both intramedullary hemolysis and red blood cells (RBCs) destruction in peripheral blood.
Thalassemic RBCs are generally prone to hemolysis and have shortened life span compared with normal RBCs. Rapid iron turn over and tissue deposition of excess iron are also found. The pathologic of RBCs is thought to be the direct consequence of the excess unpaired globin chains, β-chains in the case of α-thalassemia (hemoglobin (Hb) H disease) and α-chains in the case of β-thalassemia. There has been accumulating evidence showing that α- and β-thalassemic RBCs have different abnormalities resulting from the deleterious effects of excess globin chains which attributed to increased oxidative stress5-11. The mechanisms facilitating oxidative damage are multifactorials and still unclear. The degree of oxidative stress was indirectly measured by the alteration of antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase12,14 or the products of lipid peroxidation such as malonyldialdehyde (MDA) content14,17. However, these methods are complicated and in some cases can be subjective. There are also several direct procedures for measuring oxidative stress, including pulse radiolysis, electron spin resonance spectroscopy and chemiluminescence. Again, those methods are expensive, tedious and complicated. Detection of oxidative stress in various types of cells using 2',7'-dichlorofluorescein diacetate (DCFH) has been widely used18,19. Intracellular oxidation of nonfluorescent DCFH to highly fluorescent 2',7'-dichlorofluorescein (DCF) provided a signal which can be detected on a single cell basis, by flow cytometry. This method is an indirect measure of reactive oxygen species production and offers several advantages, mainly the ability to quantitate a large number of cells. Recently, Amer et al20, used flow cytometric analysis to show that increasing mean fluorescent intensity of DCF in the RBCs was due to the effect of oxidative stress on the β-thalassemic RBCs which were incubated either with or without H_2O_2. This study reports an attempt to evaluate the oxidative status of various thalassemic RBCs incubated either with or without 2 mM H_2O_2 by using flow cytometric technique.

Materials and Methods

Venous blood were collected in K\textsubscript{2}EDTA from healthy volunteers subjects (n = 20), Hb H disease (n = 10), patients with splenectomized β-thal/Hb E (n = 11) and un-splenectomized (n = 12) β-thal/Hb E patients. Their ages range between 20-52 years. The diagnosis of thalassemia was performed on the basis of clinical and laboratory findings as previously described2,3. All patients are in steady state and have not received blood transfusion for at least 3 months before blood collection.

For the preparation of stimulated or unstimulated RBCs with 2 mM H_2O_2, 2 μL of blood samples of both healthy subjects and thalassemic patients was diluted with 9 mL of phosphate buffered saline (PBS) (Sigma, St. Louis, USA). Then, 60 μL of 20 mM DCFH was added to 3 mL of blood suspension and incubated in 5% CO\textsubscript{2} at 37°C for 15 min. RBCs
were washed 2 times with 3 mL of PBS by centrifugation at 2,000 rpm for 5 min. Then, RBCs was resuspended in 1 mL of PBS. 500 \(\mu L \) of the cell suspension were left at room temperature with or without freshly prepared 2 mM \(\text{H}_2\text{O}_2 \). \(\text{H}_2\text{O}_2 \) is an oxidizing agent, used to react with cellular iron which will eventually lead to Fenton reaction and the generation of free radicals.

Two thousand RBCs were analyzed by a Fluorescence Activated Cell Sorter (FACScan, Becton Dickinson, San Jose, USA) and the arithmetic mean fluorescence intensity of DCF, detected with green 520 nm fluorescence, was derived by CellQuest software (Becton Dickinson, San Jose, USA) (Fig.1). A 488 nm argon laser beam was used for excitation.

Data were analyzed with SPSS for Windows, release 7.5. Difference were considered statistically significant at \(p < 0.05 \). For comparison of the mean fluorescence intensity of DCF in RBCs, the nonparametric tests were used. Comparisons between unoxidized and oxidized RBCs with 2 mM \(\text{H}_2\text{O}_2 \) was performed with Wilcoxon-signed ranks test. The data obtained from thalassemia and healthy subjects were evaluate by using Mann-Whitney U test.

Results

The mean fluorescence intensity of DCF in RBCs unoxidized or oxidized with 2 mM \(\text{H}_2\text{O}_2 \) in each group are shown in Table 1. Unoxidized Hb H RBCs were significantly higher than healthy subjects (\(p < 0.001 \)) and un-splenectomized \(\beta \)-thal/Hb E (\(p = 0.008 \)), but no statistically significant difference was found when compared with splenectomized \(\beta \)-thal/Hb E (\(p > 0.05 \)). However, significant differences were observed when compared between splenectomized \(\beta \)-thal/HbE and un-splenectomized \(\beta \)-thal/HbE (\(p = 0.029 \)) and also healthy subjects (\(p < 0.001 \)). In all groups of oxidized RBCs with 2 mM \(\text{H}_2\text{O}_2 \), the mean fluorescence intensity of DCF were significantly higher than unoxidized RBCs (\(p < 0.001 \)). Oxidized RBCs of Hb H disease were higher than un-splenectomized and splenectomized \(\beta \)-thal/Hb E (\(p < 0.001, 0.005 \), respectively). However, there were no statistically significant differences between healthy subjects and \(\beta \)-thal/Hb E patients (\(p > 0.05 \)).

Discussion

Prasartkaew et al, \(^{12} \) Ong-Ajyooth et al, \(^{14} \) who studied antioxidants enzymes in the RBCs of Hb H diseases and \(\beta \)-thal/Hb E, showed a significant elevation of SOD and GSH-Px activities and also the level of both enzymes in Hb H diseases were higher than \(\beta \)-thal/Hb E. Their results reflect the status of oxidative stress within the thalassemic RBCs, due to the increased production of reactive oxygen species such as superoxide anion and \(\text{H}_2\text{O}_2 \). Our finding are consistent with the previous reports. Vatanavichan et al, \(^{15} \) found that both MDA level and non-heme iron in Hb H diseases and \(\beta \)-thal/Hb E were significantly higher than control and suggested that in thalassemic RBCs, the lipid is more susceptible to autodestruction either by higher
Fig. 1 Flow cytometric analysis of mean fluorescent intensity of DCF in red blood cells unoxidized and oxidized with 2 mM H$_2$O$_2$ of healthy subjects (a, b) and Hb H disease (c, d). Red blood cells were incubated with 0.4 mM DCFH and then washed (a, c) or oxidized with 2 mM H$_2$O$_2$ (b, d). Dot-plots of 2,000 red blood cells with intensity of the DCF fluorescence and forward scatter light (FSC) are shown. The population had an arithmetic mean fluorescent intensity of 2.99 (a), 78.14 (b), 4.67 (c), and 131.27 (d), respectively.

Table 1 The mean fluorescent intensity of DCF of red blood cells from healthy subjects and thalassemic patients.

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Unoxidized with 2 mM H$_2$O$_2$</th>
<th>Oxidized with 2 mM H$_2$O$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean±SD</td>
<td>Min - Max</td>
</tr>
<tr>
<td>Healthy (n = 20)</td>
<td>2.2±0.4</td>
<td>1.5 - 3.0</td>
</tr>
<tr>
<td>Hb H disease (n = 10)</td>
<td>10.5±7.0</td>
<td>3.5 - 26.8</td>
</tr>
<tr>
<td>β-thal/Hb E (n = 12)</td>
<td>4.0±1.5</td>
<td>2.2 - 6.8</td>
</tr>
<tr>
<td>β-thal/Hb E (S) (n = 11)</td>
<td>7.1±3.8</td>
<td>3.0 - 13.3</td>
</tr>
</tbody>
</table>

\[\text{β-thal/Hb E} = \text{β-thalassemia/Hb E (Un-splenectomy)}; \quad \text{β-thal/Hb E (S)} = \text{β-thalasemia/Hb E (Splenectomy)}\]
lipid content of cell membrane, inadequate peroxide defensive mechanism or more oxygen free radicals. Increased non-heme iron content may be cause of increased membrane lipid peroxidation, since they could generate more superoxide radicals. Excessive globin chain which were expected in thalassemic RBCs, have also been shown to generate superoxide.

RBCs of patients with Hb H diseases contain excessive β-globin chains which are unstable and can be oxidized to form intracellular precipitate and become attached to cell membrane which cause local oxidative damage and membrane dysfunction. The amount of excess α-globin chains was found to correlate directly with the extent of hemolysis in β-thalassemia. Unpaired α-globin chains are more unstable than unpaired β-globin chains and therefore they precipitate earlier, while still in the nucleus and cytoplasm of young nucleated RBCs and prior to react with specific sites on the membrane which lead to defective erythroid maturation and short RBCs survivals. In the present study, we have used flow cytometric assays to monitor reactive oxygen species production by RBCs. A wide application of this method has been previously used to study the oxidative burst of neutrophils induced by different stimuli. Intracellular DCFH was also oxidized by reagent H₂O₂. However, the fluorescent intensity of DCF in both H₂O₂-stimulated and unstimulated RBCs of Hb H disease are significantly higher than healthy subjects and β-thal/Hb E patients.

Oxidative damage in thalassemic RBCs is complex and multifactorial. Actual proof of excessive free radicals production in RBCs is still warranted. However, it is difficult to measure such a active radicals. There is still a need for additional data in order to complete the understanding of the oxidative status in thalassemic RBCs.

In summary, measurement of the mean fluorescent intensity of DCF, using flow cytometer, can be used to detect oxidative status in RBCs. Our findings are preliminary data that reflect oxidative status in thalassemic RBCs, and provide supportive evidence that oxidative stress in thalassemic RBCs are higher than healthy subjects and that Hb H RBCs are more severe than β-thal/Hb E. Further studies are needed to understand the cause of oxidative stress in order to prevent the oxidative damage.

References

6. Shinar E, Rachmilewitz EA. Oxidative denaturation of
การศึกษา Oxidative Stress บนเม็ดเลือดแดงสาหัสซีเมีย

พรวิช สำเทjetsก, ศินีวิลาัย วิชิต, ศุภยา งานเพ็ชร์รัตน, สุชาติ ศิริษา* และ โศภิท พัฒนาภูมิสัตยา

ภาควิชาธุรกิจการตลาด คณะศิลปากร มหาวิทยาลัยมหิดล 10700

บทคัดย่อ: เม็ดเลือดแดงสาหัสซีเมียมีความไว้ต่อภาวะ oxidative stress ซึ่งเป็นสาเหตุสำคัญต่อการที่เม็ดเลือดแดงจะเสื่อม แก่ เพราะจะมีการเกิด process oxidative บนเม็ดเลือดแดง การศึกษาครั้งนี้จึงได้ตั้งค่าเม็ดเลือดแดงสาหัสซีเมีย dichlorofluorescein (DCF) ในเม็ดเลือดแดงที่ถูกไม้กระดับและภูมิคุ้มกันตัวของ 2mM H2O2 โดยวิธีการโฟลไซด์ด้วยแสงในผู้ป่วยฮิเมียตัด (10 ราย) แต่ตัวกรดซิติดอร์ (chlorophyll a) ไม่แตกต่าง (12 ราย) และ ผู้ป่วยฮิเมียตัดประเทศไทยในกลุ่มวัย (11 ราย) ผลการศึกษาพบว่า ค่าเฉลี่ยการเรืองแสงของ electron transfer ของเม็ดเลือดแดงสาหัสซีเมียที่แตกต่างอย่างในกลุ่มวัยต่อ 2mM H2O2 จะมีค่าเฉลี่ยต่อการเรืองแสงของ electron transfer ในกลุ่มวัยต่อตัด (11 ราย) แต่ตัวกรดซิติดอร์ (chlorophyll a) ไม่แตกต่าง (12 ราย) และ ผู้ป่วยฮิเมียตัดประเทศไทยในกลุ่มวัยวัยต่อตัด (chlorophyll a) ไม่แตกต่าง (11 ราย)

Key Words: Oxidative stress Thalassemia Flow cytometry

วารสารโลหิตวิทยาและเวชศาสตร์บริการโลหิต 2547; 14:101-7.
คติธรรมนำกับจิตสุขครอง

รักเพล[Anytham อย่าลืมจุด
รักบุญ อย่าลืมศีล

พระครูปริยัติปญญาวุธ
วัดโคกงาม อ.ด่านช้าง จ.เลย