Original Article

The Evaluation of Platelet Crossmatching in Alloimmunized Thrombocytopenic Patients

Sarika Makechay¹, Sasijit Vejbaesya¹, Theera Ruchutrakool², Parichart Permpikul¹ and Viroje Chongkolwatana¹

¹Department of Transfusion Medicine; ²Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University

Objective: To evaluate the results of platelet crossmatching with two different methods and the response of platelet transfusion in alloimmunized thrombocytopenic patients. Materials and Methods: Forty-four alloimmunized thrombocytopenic patients with refractory to random platelet transfusions were included in this study. Twenty patients’ sera were crossmatched with 2,871 lymphocytes and platelets samples from healthy donors using lymphocytotoxicity test (LCT) and solid phase red cell adherence assay (SPRCA) methods to evaluate the concordance and discordance of negative and positive results. The achievement of platelet transfusion between crossmatched and random platelets was determined using a CCI calculation. A 1-hour CCI > 7,500 or 24-hours CCI > 4,500 are considered acceptable. Results: Platelet crossmatching using LCT, when compared with SPRCA was significantly correlated (p < 0.001) and demonstrated the 85% concordance and the 15% discordance results among 2,871 crossmatched samples. The satisfactory CCI at 1-hour and 24-hours posttransfusion of 69 crossmatched transfusion episodes were 51% and 38%, respectively which were statistically significant greater than 109 random platelet transfusion events (30% and 14%, respectively) at p < 0.05. In addition, the satisfactory CCI of the crossmatched platelet transfusion was associated with SPRCA which gave negative and positive results of 95% and 5%, respectively. Conclusion: Platelet crossmatching using SPRCA combined with the LCT technique is an effective selection method for compatible platelets for alloimmunized thrombocytopenic patients.

Keywords: Platelet crossmatching, Alloimmunized thrombocytopenia, CCI, Platelet refractoriness

the ABO system and human leukocyte antigens (HLA) and or human platelet antigen (HPA) which are on the platelet surface membranes. Approximately 80% of refractory cases are due to non-immune causes such as sepsis, fever, splenomegaly, disseminated intravascular coagulation (DIC), hepatic sinusoidal obstruction syndrome - also termed hepatic veno-occlusive disease, graft-versus-host disease (GVHD), hemorrhages and medications such as quinidine, penicillin, sulfa drugs, heparin, diuretics and vancomycin due to drug induce thrombocytopenia. The compatible platelets can be identified using several methods of platelet cross-matching. This study aimed to evaluate the difference of platelet crossmatch result between the lymphocytoxicity test (LCT) and the solid phase red cell adherence assay (SPRCA), and to compare the response of alloimmunized thrombocytopenic patients who received crossmatched and random platelets transfusions.

Materials and Methods

The present study was approved by the Research Ethics Committees of Siriraj Hospital, Mahidol University, Thailand. There were 44 alloimmunized thrombocytopenic patients and donor platelets obtained from The Department of Transfusion Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University. Patient sera, donor lymphocytes and platelets were collected between May 2012 and February 2013. There were 20 patient sera and 2,871 samples of ACD blood obtained from healthy donors at the end of blood donation and kept at 4°C overnight before being used for LCT crossmatching. The platelet concentrates that had identical unit numbers with the ACD blood samples obtained from the segment of platelet bags in a sterile condition and kept frozen at -70 ± 5°C for at least 1 hour before being used for SPRCA crossmatching. The success of platelet transfusion was evaluated based on the Corrected Count Increment (CCI) of 69 episodes of LCT compatible platelets transfused into 20 patients and 109 episodes of ABO identical random platelets transfused into 24 patients then the Corrected Count Increment (CCI) was calculated as follow. A 1-hour CCI > 7,500 or 24-hours CCI > 4,500 are considered as response group

\[
\text{CCI} = \frac{(\text{Post platelet count} - \text{Pre platelet count}) \times \text{Body surface area (m}^2)}{\text{Number of platelets transfused (10}^{11})}
\]

The Pre and post-transfusion platelet count at 1-hour and 24-hours, patient characteristics and the characteristics of the platelet transfusion were obtained from the medical records of each patient.

Statistical analysis

The platelet response between the crossmatched and random platelet transfusion involved the different results of the two methods analyzed by Pearson’s chi-square test and others; age, gender, diagnosis, previous transfusion and clinical condition analyzed by descriptive statistics: mean, median, and percentage using SPSS version 16 software.

Results

Characterization of alloimmunized thrombocytopenic patients

All of the 44 alloimmunized thrombocytopenic patients included in this study had HLA reactive antibody tested by LCT and SPRCA techniques, 13 patients were male (30%) and 31 were female (70%) with a median age of 39 years (range from 16 to 81 years). They were separated into two groups of receiving crossmatching using LCT and SPRCA techniques and receiving random platelet transfusions. These patients had various diagnostic clinical complications from previous transfusions. More than 50% of them received medical and chemotherapy, only one patient in the random group had allogeneic hematopoietic stem cells transplant H SCT. (Table 1)

The results of platelet crossmatching

The total of 2,871 crossmatched samples of 20 alloimmunized thrombocytopenic patients tested by LCT and SPRCA methods showed the concordance of
negative (1,269 - 78%) and positive (1,171 - 94%) results. The results of the LCT and SPRCA techniques were satisfactory and significantly correlated with the test strength agreement of $K = 0.702$ at $p < 0.01$. However, there were 77(6%) and 354(22%) of discrepancies between the two methods. (Table 2) The transfusion outcome of 20 patients who received crossmatched platelet transfusion in this present study was separated in to response and non-response groups, with 13 patients (65%) and 7 patients (35%), respectively.

Among 20 patients who received crossmatched platelet transfusion, nine hundred and twenty crossmatched pairs in the response group had a good agreement between the two techniques, which was better than 7 patients in the non-response group with the test strength agreement of $K = 0.711$, $p < 0.001$ and 0.566, $p < 0.05$ respectively. (Table 3)

Three hundred and sixteen compatible platelets from the total of 1,645 LCT crossmatched pairs were transfused to 20 alloimmunized thrombocytopenic patients...
Table 2 The results of platelet crossmatching with LCT and SPRCA techniques

<table>
<thead>
<tr>
<th></th>
<th>LCT</th>
<th>SPRCA</th>
<th>Total</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative</td>
<td>Positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>1,269 (78%)</td>
<td>354 (22%)</td>
<td>1,623</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Positive</td>
<td>77 (6%)</td>
<td>1,171 (94%)</td>
<td>1,248</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1,346 (47%)</td>
<td>1,525 (53%)</td>
<td>2,871</td>
<td></td>
</tr>
</tbody>
</table>

LCT = Lymphocytotoxicity test; SPRCA= Solid phase red cell adherence assay

Table 3 The response of crossmatched and random platelet transfusion

<table>
<thead>
<tr>
<th></th>
<th>Crossmatched platelet transfusion</th>
<th>Random platelet transfusion</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
<td>N (%)</td>
<td></td>
</tr>
<tr>
<td>Number of patient</td>
<td>20 (45)</td>
<td>24 (55)</td>
<td></td>
</tr>
<tr>
<td>Number of transfusion episodes</td>
<td>69 (39)</td>
<td>109 (61)</td>
<td></td>
</tr>
<tr>
<td>1-hour CCI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satisfactory</td>
<td>35 (51)</td>
<td>33 (30)</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Unsatisfactory</td>
<td>34 (49)</td>
<td>76 (70)</td>
<td></td>
</tr>
<tr>
<td>24-hour CCI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satisfactory</td>
<td>26 (38)</td>
<td>15 (14)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Unsatisfactory</td>
<td>43 (62)</td>
<td>94 (86)</td>
<td></td>
</tr>
</tbody>
</table>

in 69 transfusion episodes. Only 35 episodes (170 units) gave good response to the transfusion (51%). When using SPRCA, 162 units gave negative results (95%-162 in 170) and the other 8 gave positive SPRCA (5%).

In the other group, 34 crossmatched transfusion episodes were non-responsive (49%) with 55 units (38%), and when using SPRCA, 91 units were positive (62%). However, the different results in SPRCA crossmatching was statistically significant between the response and non-response groups with $\chi^2 = 121.223$, p < 0.001. While, 33(30%) out of the 109 episodes of random platelet transfusions were responsible for the therapy. (Table 3, 4)

The response of transfusion was having a good correlation between the 1-hour and 24-hours post-transfusions with a test strength agreement of $K = 0.74$ at p < 0.001 and the success of the platelet transfusion at the 1-hour post transfusion point showed statistically significant differences between the crossmatch and random platelet transfusion with $\chi^2 = 7.484$, p-value < 0.05 and the 24-hours point were $\chi^2 =13.636$ at p < 0.001.

Discussion

The compatible platelet donors can be identified by various crossmatch methods. The lymphocytotoxicity test (LCT) has been used universally for antibody screening and crossmatching in platelet transfusion since it was first used in 1964. Nowadays, various technologies for alloantibody detection are applied to crossmatching.
In this study, we evaluated the results of platelet crossmatching between LCT using the standard conventional cell-based complement dependent cytotoxicity (CDC) compared with solid phase red cell adherence assay (SPRCA). The results of both techniques were concordance in both negative and positive results among 431 crossmatched pairs, with 18% and 82%, respectively, having discrepancies. However, the different results of these two techniques may have arisen from some limitation in each technique. The recent study of Buakaew J and Promwong C found the sensitivity and specificity of LCT and SPRCA were 84.21%/95.83% and 94.73%/100%, respectively. This present study found a good agreement between the two techniques in the response group, greater than in non-response group. However, the association between SPRCA crossmatched results and platelet response were statistically significantly different between the response and non-response groups.

The study showed that 35 out of 69 episodes (51%) of LCT crossmatched compatible platelet transfusions responded to the transfusion at the 1-hour and reduced to 26(36%) at the 24-hours post-transfusion. (Table 3). However, the normal platelet increment at 1-hour after the transfusion returned to the baseline after 24-hours where the shortening of platelet survival may be associated with the clinical condition of the patients and the use of some antibiotics or non immune cause. In addition, most of inadequate increment at the 1-hour post-transfusion was due to alloimmunization. We found that most of the patients who were transfused with crossmatched and random platelets had clinical complications due to non-immune factors which were similar with the study of Novotny et al. Most of these patients had an infection, with around 55% having sepsis due to fungal infection and during an infection episode, the production of alloantibodies can be stimulated and cause the non-responding to the platelet transfusion.

In this study, seven patients in each group had DIC that was associated with septicemia, the most common clinical condition found and was further associated with a poor response to transfused platelets. However, the study of Slichter et al. found that DIC was not affected at either the 1-hour or 24-hours post transfusion platelet increment, but instead decreasing the time to the next platelet transfusion and the controlling of DIC may improve the platelet count after transfusion.

Moreover, 70% of refractory oncohematologic patients had these clinical conditions and received drugs, especially amphotericin B, which was associated with a decrease in post-transfusion increments at 1 hour and at 18 to 24 hours and also decrease the time to the next transfusion and these affected both the post-transfusion platelet increment and refractoriness. There was one case in the random group that had splenomegalgy and a failure to platelet transfusion due to the increasing of platelet pooling in spleen from 40% in a normal spleen to 80%. One of each group had a previous history of splenectomy and represented the success of platelet recovery in both crossmatched and some episodes of uncrossmatched platelet transfusion and may be from the status of spleen which having the greatest effect on improving platelet increment.

However, we found 35% of twenty alloimmunized thrombocytopenic patients had a refractory to crossmatched platelet transfusion and most patients were associated with an infection. While the recent study of Aline AF and TRAP study showed that 22% and 71% of alloimmunized subjects, respectively, had an inadequate response to crossmatched platelet transfusion associated with the clinical factors. In this study, six of seven refractory patients had history of two or more pregnancies and had history of medication in five of them (71.4%) which the condition of immuno-suppressed in oncohematology patients induced by the underlying disease and chemotherapy should be considered for the role in facilitating infection.
Both techniques used in this present study were different from the other methods by using different specific target cells, even though both of them were time consuming and required personnel skill. Nevertheless, both require small amount of serum, economical and only requires a small budget. They are cheaper than other methods and suitable as alternative techniques use when platelet crossmatching and antibody screening are required especially in alloimmunized thrombocytopenic patients.

Conclusion

The compatible crossmatched donor platelets are still needed for patients who are alloimmunized against platelet antigens and are refractory to random platelet transfusion. The use of SPRCA and combine with LCT technique are effective methods for the selection of compatible platelets for the alloimmunized thrombocytopenic patients. In addition, both can be used to prevent the refractory to platelet transfusion for patients requiring platelet transfusion as well.

Acknowledgements

I am particularly indebted to The National Blood Centre, Thai Red Cross Society who gave the opportunity and support to my study.

References

การประเมินการทดสอบความเข้ากันได้ของเกล็ดเลือดในผู้ป่วยที่มีเกล็ดเลือดต่ำ และมีแอนติบอดีร่วมด้วย

สารีก แม่แดง¹ ศศิจิต เวชแพศย² ชีระ อุชรตะศุภ³ ปริชาติ เพ็งพิภุฎ ⁴ และ วิโรจน์ จงกลวัฒนา ¹
¹ภาควิชาเวชศาสตร์การธนาคารเลือด ²ภาควิชารักษาสุขภาพ คณะแพทยศาสตร์ศิริราชภูมิ มหาวิทยาลัยมหิดล

วัตถุประสงค์ เพื่อประเมินผลกระทบของการทดสอบความเข้ากันได้ (crossmatch) ของเกล็ดเลือด ด้วยวิธีการที่แตกต่างกันสองวิธี และประเมินการตอบสนองของเกล็ดเลือดในผู้ป่วยที่มีเกล็ดเลือดต่ำและมีแอนติบอดีร่วมด้วย วัสดุและวิธีการ ทำการศึกษาในผู้ป่วยเกล็ดเลือดต่ำที่มีแอนติบอดีร่วมด้วยโดยทำการทดสอบยับยั้งตัวอย่าง lymphocytes และเกล็ดเลือดของผู้บริจาคจำนวน 2,871 ราย ด้วยวิธี Lymphocytotoxicity test (LCT) และ Solid phase red cell adherence assay (SPRCA) ประเมินผลการทดสอบความเข้ากันได้ โดยเปรียบเทียบความสำเร็จของการให้เกล็ดเลือดร่วมระหว่างกลุ่มที่ได้รับการทำ crossmatch และไม่ได้ทำ crossmatch (random platelets) โดยการคำนวณหาค่า Corrected count increment (CCI) คือ ค่า 1-hr CCI > 7,500 และ 24-hrs -CCI > 4,500 เป็นค่าที่ยอมรับได้ ผลการศึกษา ผลการทำการ crossmatch ของทั้งสองวิธีมีความสอดคล้องกันอย่างมีนัยสำคัญ (p < 0.001) จากการทำ crossmatch ในตัวอย่างเลือดจำนวน 2,871 คู่ พบว่ามีตัวอย่างเลือด 2,440 คู่ (ร้อยละ 85) ทั้งสองวิธีให้ผลสอดคล้องกัน และมี 431 คู่ (ร้อยละ 15) ที่ไม่สอดคล้องกัน เมื่อคำนวณค่า 1-hr CCI และ 24-hrs CCI ของกลุ่มที่ได้รับ crossmatched platelets จำนวน 69 คู่ พบว่า CCI ที่ยอมรับได้ คือเป็นร้อยละ 30 และ 14 ตามลำดับ ซึ่งมากกว่ากลุ่มที่ได้รับ random platelets จำนวน 109 คู่ ซึ่งมีค่า CCI ที่ยอมรับได้ คิดเป็นร้อยละ 30 และ 14 ตามลำดับ อย่างมีนัยสำคัญ (p < 0.05) นอกจากนี้ ค่า CCI ที่ยอมรับได้ยังมีความสัมพันธ์กับผลการทำการ crossmatch ด้วยวิธี SPRCA โดยร้อยละ 95 ให้ผลเป็นลบ และร้อยละ 5 ให้ผลเป็นบวก สรุป การทำ crossmatch เกล็ดเลือดโดยวิธี SPRCA ร่วมกับ LCT เป็นวิธีการที่มีประสิทธิภาพในการลดเสี่ยงการเกล็ดเลือดต่ำที่เข้ากันได้สำหรับผู้ป่วยเกล็ดเลือดต่ำที่มีแอนติบอดีร่วมด้วย

Keywords : Platelet crossmatching Alloimmunized thrombocytopenia CCI Platelet refractoriness
