Controversies in Hematology: Case-Based Discussion

Acute leukemia in Adolescents and Young adults

25-26 October 2018, Chiang Mai Thailand

Associate Prof. Adisak Tantiworawit, MD
Division of Hematology, Department of Medicine
Faculty of Medicine, Chiang Mai University
and Maharaj Nakorn Chiang Mai hospital
Controversies in Hematology: Case-Based Discussion

ALL in Adolescents and Young adults (AYA)

• Standard risk ALL
 – Role of transplantation in 1st CR
 – Pediatric adapted regimen for adult ALL

• Philadelphia positive ALL
 – Prognosis
 – Role of transplantation
 – Role of chemotherapy+TKI without transplantation
Case presentation

• 24 year old woman, engineer
• Presented with joint pain, anemic symptom
• Diagnosis T-ALL
• Wbc 78,500 per cu.mm. (lymphoblast 87%)
• BM chromosome – 46, XX
Case presentation

What is your treatment of choice for induction chemotherapy regimen?

A. GMALL
B. HyperCVAD or augmented HyperCVAD
C. Cancer and Leukemia Group B (CALGB study)
D. Standard or augmented Berlin-Frankfurt-Munster (BFM)
E. Pediatric inspired regimen
Case presentation

- Patient received pediatric inspired regimen (TPOG 2016) and achieved CR after induction
- She had HLA matched sibling (younger brother), SSS coverage

What is your treatment of choice for post-remission therapy?

A. Sibling allogeneic SCT
B. Continue chemotherapy
Role of transplantation in 1st CR
Controversies in Adult ALL

2628 children with newly diagnosed ALL in 15 studies conducted at St. Jude hospital from 1962 to 2005

Controversies in Adult ALL

Around 1/3 of adult ALL, cured by standard chemotherapy

Biology of ALL according to age

After age of 10 year
- Increase of high-risk factors
- Decrease of good factors

Table 1. Incidence of Ph-like ALL across age ranges

<table>
<thead>
<tr>
<th>SR ALL children, %</th>
<th>HR ALL children, %</th>
<th>16-21 y, %</th>
<th>21-39 y, %</th>
<th>40-71 y, %</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>13</td>
<td>21</td>
<td>27</td>
<td>NR</td>
<td>16</td>
</tr>
<tr>
<td>15-18</td>
<td></td>
<td>25</td>
<td>18.7</td>
<td>11</td>
<td>93</td>
</tr>
<tr>
<td>NR</td>
<td>NR</td>
<td>~20</td>
<td>~19</td>
<td><10</td>
<td>17</td>
</tr>
</tbody>
</table>

Controversies in Adult ALL

- High remission rates in adults and children
- LFS in children 80% but only 35% in adult
- Most adults experience relapse

<table>
<thead>
<tr>
<th></th>
<th>Complete Remission</th>
<th>Leukemia-Free Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults</td>
<td>80% to 90%</td>
<td>35%</td>
</tr>
<tr>
<td>Children (2-10 yrs of age)</td>
<td>97%</td>
<td>80%</td>
</tr>
</tbody>
</table>

Controversies in Adult ALL SCT at First CR

Allo BMT vs Auto BMT in Patients With Ph- ALL: MRC UKALL XII/ECOG E2993

Patients with Ph- ALL aged < 55 yrs in complete remission after induction therapy (N = 919)

- High-Dose Methotrexate (3 doses) → Sibling Allo BMT (n = 389)
 - Yes → HLA-matched sibling donor available?
 - No → Auto BMT (n = 530)
 - Consolidation/Maintenance Chemotherapy: 2.5 years

Controversies in Adult ALL

SCT at First CR

- Improved OS with allo BMT vs. auto BMT or chemotherapy in standard-risk
- 5-year OS for allo-BMT 54% vs 44%, (P < .02)
- High risk group OS was off set by TRM of SCT

Outcome by Risk Group, %

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Donor (n = 389)</th>
<th>No Donor (n = 530)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall 5-yr survival</td>
<td>53</td>
<td>45</td>
<td>.02</td>
</tr>
<tr>
<td>High risk</td>
<td>40</td>
<td>36</td>
<td>.50</td>
</tr>
<tr>
<td>Standard risk</td>
<td>63</td>
<td>51</td>
<td>.01</td>
</tr>
</tbody>
</table>

10-yr relapse rate

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Donor (n = 389)</th>
<th>No Donor (n = 530)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>High risk</td>
<td>39</td>
<td>62</td>
<td>< .0001</td>
</tr>
<tr>
<td>Standard risk</td>
<td>27</td>
<td>50</td>
<td>< .0001</td>
</tr>
</tbody>
</table>

Controversies in Adult ALL SCT at First CR

Figure 2. Forest plot of comparison: 1 Donor versus no donor, outcome: 1.1 Overall survival (overall sample).

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>log[Hazard Ratio]</th>
<th>SE</th>
<th>Weight</th>
<th>Hazard Ratio IV, Random, 95% CI</th>
<th>Hazard Ratio IV, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornelissen 2009</td>
<td>-0.21453287</td>
<td>0.283</td>
<td>5.0%</td>
<td>0.81 [0.48, 1.35]</td>
<td></td>
</tr>
<tr>
<td>De Witte 1994</td>
<td>-0.40677966</td>
<td>0.411</td>
<td>11.5%</td>
<td>0.67 [0.30, 1.49]</td>
<td></td>
</tr>
<tr>
<td>Fielding 2009</td>
<td>-0.22316556</td>
<td>0.174</td>
<td>11.5%</td>
<td>0.80 [0.57, 1.13]</td>
<td></td>
</tr>
<tr>
<td>Goldstone 2008</td>
<td>-0.094302</td>
<td>0.086</td>
<td>46.7%</td>
<td>0.91 [0.77, 1.08]</td>
<td></td>
</tr>
<tr>
<td>Hunault 2004</td>
<td>-0.57446808</td>
<td>0.343</td>
<td>2.9%</td>
<td>0.56 [0.29, 1.10]</td>
<td></td>
</tr>
<tr>
<td>Labar 2004</td>
<td>-0.02020202</td>
<td>0.193</td>
<td>9.3%</td>
<td>0.98 [0.67, 1.43]</td>
<td></td>
</tr>
<tr>
<td>Ribera 2005</td>
<td>0.21193232</td>
<td>0.298</td>
<td>3.9%</td>
<td>1.24 [0.69, 2.22]</td>
<td></td>
</tr>
<tr>
<td>Sebban 1994</td>
<td>-0.28906301</td>
<td>0.165</td>
<td>12.7%</td>
<td>0.75 [0.54, 1.04]</td>
<td></td>
</tr>
<tr>
<td>Takeuchi 2002</td>
<td>-0.05008944</td>
<td>0.299</td>
<td>3.9%</td>
<td>0.95 [0.63, 1.71]</td>
<td></td>
</tr>
<tr>
<td>Ueda 1998</td>
<td>-0.41186736</td>
<td>0.418</td>
<td>2.0%</td>
<td>0.86 [0.29, 1.50]</td>
<td></td>
</tr>
</tbody>
</table>

Total (95% CI)
100.0%
0.86 [0.77, 0.97]

Heterogeneity: $\tau^2 = 0.00$; $\chi^2 = 5.70$, df = 9 ($P = 0.77$); $I^2 = 0$

Test for overall effect: $Z = 2.48$ ($P = 0.01$)

Pediatric adapted regimen for adult ALL
Controversies in Adult ALL

- Summary of recent studies using pediatric-inspired protocols in AYA
- OS 60-80% and LFS 60-70%

<table>
<thead>
<tr>
<th>Study</th>
<th>Age range, y</th>
<th>Patients, n</th>
<th>CR rate</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRALLE-93 [7]</td>
<td>15–20</td>
<td>77</td>
<td>94%</td>
<td>78% 5-y OS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72% 5-y DFS</td>
</tr>
<tr>
<td>UK ALL97 [8]</td>
<td>15–17</td>
<td>61</td>
<td>98%</td>
<td>71% 5-y OS</td>
</tr>
<tr>
<td>DCOG [9]</td>
<td>15–18</td>
<td>47</td>
<td>98%</td>
<td>79% 5-y OS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>71% 5-y DFS</td>
</tr>
<tr>
<td>DFCI [10]</td>
<td>15–18</td>
<td>51</td>
<td>94%</td>
<td>81% 5-y OS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78% 5-y EFS</td>
</tr>
<tr>
<td>CCG [11]</td>
<td>16–20</td>
<td>197</td>
<td>90%</td>
<td>67% 7-y OS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>63% 7-y EFS</td>
</tr>
<tr>
<td>CCG 1961 [12•]</td>
<td>16–21</td>
<td>262</td>
<td>96%</td>
<td>77.5% 5-y OS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>71.5% 5-y EFS</td>
</tr>
<tr>
<td>St. Jude’s XV [13•]</td>
<td>15–18</td>
<td>44</td>
<td>98%</td>
<td>88% 5-y OS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>86% 5-y EFS</td>
</tr>
<tr>
<td>PETHEMA [16]</td>
<td>15–18</td>
<td>35</td>
<td>94%</td>
<td>77% 6-y OS</td>
</tr>
<tr>
<td></td>
<td>18–30</td>
<td>46</td>
<td>100%</td>
<td>63% 6-y EFS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>63% 6-y OS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60% 6-y EFS</td>
</tr>
<tr>
<td>GRAALL [17]</td>
<td>15–45</td>
<td>172</td>
<td>93.5%</td>
<td>61% 3.5-y OS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57% 3.5-y EFS</td>
</tr>
<tr>
<td>PMH [18•]</td>
<td>18–35</td>
<td>42</td>
<td>98%</td>
<td>83% 5-y OS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>77% 5-y RFS</td>
</tr>
</tbody>
</table>

Outcomes in AYAs treated in fully pediatric or pediatric-inspired trials

Although the majority of recent studies demonstrate a survival benefit using intensive pediatric regimens for AYA, another recently published comparison study of an “adult” regimen (hyper-CVAD) vs a pediatric regimen (BFM-like) found equivalent EFS (~70%). Because this trial was conducted at an institution with a large, experienced leukemia program, the results may not be widely generalizable but suggest that high-volume referral centers may offer benefits beyond chemotherapeutics. In fact, recent data show that outcomes for AYAs with ALL are significantly improved if treatment is administered at a university or National Cancer Institute-sponsored cancer center with expertise in the complex regimens used to treat ALL.

Outcomes in AYAs treated in fully pediatric or pediatric-inspired trials

Table: Outcomes in AYAs treated in fully pediatric or pediatric-inspired trials

<table>
<thead>
<tr>
<th>Age range, y</th>
<th>Median age, y</th>
<th>CR, %</th>
<th>Early death, %</th>
<th>Death in CR, %</th>
<th>HSCT, %</th>
<th>EFS/DFS/CRD</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-30</td>
<td>20</td>
<td>98</td>
<td>1</td>
<td>1*</td>
<td>0*</td>
<td>6</td>
<td>EFS, 61</td>
</tr>
<tr>
<td>17-40</td>
<td>26</td>
<td>91</td>
<td>4</td>
<td>NR</td>
<td>35</td>
<td>2</td>
<td>EFS, 66</td>
</tr>
<tr>
<td>15-29</td>
<td>19</td>
<td>99</td>
<td>NR</td>
<td>NR</td>
<td>28</td>
<td>5</td>
<td>EFS, 61</td>
</tr>
<tr>
<td>16-24</td>
<td>19</td>
<td>94</td>
<td>4</td>
<td>15</td>
<td>5</td>
<td>5 DFS, 67</td>
<td>5</td>
</tr>
<tr>
<td>17-39</td>
<td>24</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>2</td>
<td>2 EFS, 66</td>
<td>2</td>
</tr>
<tr>
<td>18-50†</td>
<td>28†</td>
<td>86</td>
<td>1</td>
<td>NR</td>
<td>21</td>
<td>4</td>
<td>EFS, 58</td>
</tr>
<tr>
<td>13-39</td>
<td>22</td>
<td>93</td>
<td>1</td>
<td>8</td>
<td>10</td>
<td>3 CRD, 70</td>
<td>5</td>
</tr>
<tr>
<td>15-40</td>
<td>27</td>
<td>98</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>3 CRD, 67</td>
<td>5</td>
</tr>
<tr>
<td>18-35</td>
<td>NR</td>
<td>98</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>3 DFS, 77</td>
<td>3</td>
</tr>
<tr>
<td>15-35</td>
<td>NR</td>
<td>91</td>
<td>4</td>
<td>NR</td>
<td>43</td>
<td>5 CRD, 61</td>
<td>5</td>
</tr>
<tr>
<td>15-35</td>
<td>24</td>
<td>97</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>5 EFS, 59</td>
<td>5</td>
</tr>
<tr>
<td>18-45</td>
<td>NR</td>
<td>NR</td>
<td>1</td>
<td>6</td>
<td>NR</td>
<td>5 EFS, 74</td>
<td>5</td>
</tr>
</tbody>
</table>

Fully pediatric or pediatric-inspired trials
- Split into age groups of 18 to 25 years and 26 to 45 years

Controversies in Adult ALL

Induction (4 weeks)
- Prednisone: 10 mg PO QID Days 0–28
- Doxorubicin: 30 mg/m² IV Days 0 and 1
- Vincristine: 2 mg IV Days 0, 7, 14, 21
- Methotrexate: 4 g/m² IV over 1 h Day 2 (with leucovorin rescue)
- Asparaginase: 25 000 IU/m² IM Day 4
- Cyt/Mtx/HC*: 40/12/15 mg IT Days 0, 14

CNS therapy (3 weeks)
- Doxorubicin: 30 mg/m² IV Day 1
- Vincristine: 2 mg IV Day 1
- 6-Mercaptopurine: 50 mg/m² PO QHS Days 1–14
- Cranial radiation: 1200 cGy Over 8 d
- Cyt/Mtx/HC*: 40/12/15 mg IT Days 1, 4, 8, 11

Intensification therapy: 30 weeks (10 cycles–21 d/cycle)
- Doxorubicin: 30 mg/m² IV Day 1 (cycles 1–7 only)
- Vincristine: 2 mg IV Day 1
- 6-Mercaptopurine: 50 mg/m² PO QHS Days 1–14
- Dexamethasone: 9 mg/m² PO BID Days 1–5
- Asparaginase: 12 500 IU/m² IM Days 1, 8, 15
- Methotrexate: 30 mg/m² IV Days 2, 9, 16 (cycles 8–10 only)
- Cyt/Mtx/HC*: 40/12/15 mg IT Every 18 weeks

Maintenance therapy: 72 weeks (24 cycles–21 d/cycle)
- Vincristine: 2 mg IV Day 1
- 6-Mercaptopurine: 50 mg/m² PO QHS Days 1–14
- Dexamethasone: 6 mg/m² PO BID Days 1–5
- Methotrexate: 30 mg/m² IV/IM Days 1, 8, 15
- Cyt/Mtx/HC*: 40/12/15 mg IT Every 18 weeks

Storr JM, et al. BJH, 146,76–85.
St. Jude’s data reported significant toxicities

- 11.7, 32.9, 23.8, 27.7% in 3-year cumulative risks
- Grade 4 to 5 severe infection, grade 3 to 4 osteonecrosis, grade 2 to 4 thrombosis, and grade 3 to 4 hyperglycemia
- Others: neuropathy, neuro-cognitive dysfunction, pancreatitis, cardiac toxicity, and secondary malignancies
Thai Pediatric Oncology Group (TPOG) regimen

- Pediatric inspired regimen – dose adapted
- Remain CNS irradiation – reduced dose

Treatment protocol for very high risk acute lymphoblastic leukemia [ThaiPOG-ALL-1303]

Protocol name: ThaiPOG-ALL-1303
Protocol for: Very High Risk ALL
Reference: COG AALL1131
Open date: January 2014 (revised October 2015)

Patient eligibility:
- Precursor B-cell ALL with
 - Age at diagnosis ≥14 years old
 - CNS-3
 - Induction failure (≥M2 at day 20)
 - Previous SR and HR with Day 29 BM MRD ≥ 0.01% with no Favorable cytogenetic
- T-cell ALL with
 - CNS-3
 - Day 29 BM MRD ≥0.01%

Exclusion criteria: Burkitt leukemia

Treatment schema:
- SR-Induction
- HR/VHR-Induction
- Day 29 assessment

VHR features
- VHR-Aug-Consolidation
- Induction failure, Hypodiploidy
- HSCT
- VHR-Aug-IM-I
- VHR-Aug-DI
- VHR-IM-II
- Aug-Maintenance
Superiority of Pediatric CMT over allo-HCT for Adult ALL in 1st CR

A Combined Analysis of Dana-Farber ALL Consortium and CIBMTR Cohorts

Caveat:
• Aged 18-50 years
• HCT cohort was older (34 vs. 30 y, p=0.001) and higher WBC
• RCT is needed

Poor prognostic factors in ALL

B-lineage ALL
- Age > 35 years
- WBC > 30,000/µL
- Pro-B ALL
- t(9;22)[BCR/ABL]
- t(4;11)[AF4/MLL]
- CR > 4 weeks

T-lineage ALL
- WBC > 100,000/µL
- Early-T or mature-T
- CR > 4 weeks

German Multicenter ALL Group 2000
BCR-ABL1–like ALL

- 15% of BCP-ALL
 - Unusual specific genetic subgroup
- High risk of relapse and poor outcome
- Similar gene expression signature to BCR-ABL1–positive

BCR-ABL1–like ALL

- 50% had CRLF2 high expression
- 30% had JAK2 mutations
- The remainder had ABL1, JAK2, PDGFRB, and other kinase rearrangements and sequence mutations

Secondary chromosomal and genomic abnormalities

The 4 most prevalent ACA

- Deletions of CDKN2A/B (30–40%)
- Deletions/mutations of IKZF1 (20%)
- Deletions/mutations/amplifications of PAX5 (20%)
- Deletions of ETV6 (10–15%)

Controversies in Adult ALL

Status of minimal residual disease post induction predicts outcome in adult ALL

Ped: MRD at day 33 and day 78 the most important prognosis

GMALL: MRD negativity ($<10^{-4}$) at day 71 and week 16 showed clinical benefit independent of pre-therapeutic risk factors

Holowiecki J, et al. BJH, 142, 227–237.
Characteristics of MRD methods

<table>
<thead>
<tr>
<th>MRD technique</th>
<th>Conventional flow cytometry</th>
<th>RQ-PCR of IG/TR genes or breakpoint regions of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated sensitivity</td>
<td>$3-4$ colors: $10^{-3}-10^{-4}$</td>
<td>$10^{-4}-10^{-5}$</td>
</tr>
<tr>
<td></td>
<td>$6-8$ colors: 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Applicability</td>
<td>BCP-ALL: $>90%$</td>
<td>BCP-ALL: $95%$</td>
</tr>
<tr>
<td></td>
<td>T-ALL: $>90%$</td>
<td>T-ALL: $90-95%$</td>
</tr>
<tr>
<td>Advantages</td>
<td>Fast</td>
<td>Applicable in virtually all BCP-ALL and T-ALL</td>
</tr>
<tr>
<td></td>
<td>Analysis at cell population level or single cell level</td>
<td>Sensitive</td>
</tr>
<tr>
<td></td>
<td>Easy storage of data</td>
<td>Well standardized + regular international QA rounds</td>
</tr>
<tr>
<td></td>
<td>Information about the whole sample cellularity</td>
<td></td>
</tr>
<tr>
<td>Disadvantages</td>
<td>Variable sensitivity, because of similarities between normal (regenerating) cells and malignant cells</td>
<td>Time-consuming</td>
</tr>
<tr>
<td></td>
<td>Limited standardization, no QA results</td>
<td>Expensive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Requires extensive experience and knowledge</td>
</tr>
</tbody>
</table>

Supplemental Figure 1: GMALL 07 Trial Overview for Ph-negative ALL

Stratification I according to risk factors

Stratification II according to MRD

* If donor or autologous stem cells available

Principle of pediatric inspired regimen

- Mostly based on Berlin-Frankfurt-Munster
- Multiple cycle of non-cross-resistant agents
- Repeated dosed of L-as, vincristine, steroid
- Early and frequent CNS prophylaxis (omit RT)
- Delay intensification
- Prolonged maintenance
- Higher cumulative doses of active agents
- But Less myelosuppression
Controversies in Adult ALL

• Standard risk ALL
 – Pediatric adapted regimen for adult ALL
 • Yes, if applicable
 • But availability of drug and treatment related toxicity
 – Transplantation in 1st CR
 • Yes, if use standard adult ALL regimen
 • No RCT in the era of Pediatric adapted regimen
Controversies in Adult ALL

• Standard risk ALL
 – Pediatric adapted regimen for adult ALL
 • Yes, strongly encourage
 • Protocol adaptation, treatment related toxicity (TPOG)
 • Check your protocol
 – Transplantation in 1st CR
 • Yes, if use standard adult ALL regimen
 • High risk and positive MRD
 • No RCT in the era of Pediatric adapted regimen
Controversies in Adult ALL

Outcome of 609 relapse adults ALL; MRC UKALL12/ECOG 2993 study

Philadelphia positive ALL
Controversies in Hematology: Case-Based Discussion

ALL in Adolescents and Young adults (AYA)

• Standard risk ALL
 – Role of transplantation in 1st CR
 – Pediatric adapted regimen for adult ALL

• Philadelphia positive ALL
 – Prognosis
 – Role of transplantation
 – Role of chemotherapy+TKI without transplantation
Case presentation

• 17 year old woman, student
• Presented with joint pain, prolonged fever
• Diagnosis CALLA-B-ALL
• Wbc 6,620 per cu.mm. (lymphoblast 90%)
• BM chromosome – 47, XX, i(7q), der(8), t(9;22),+mar[5]/ 46, XX, t(9;22)[2], 46,XX[10]
Case presentation

What is your treatment of choice for induction chemotherapy regimen plus TKI?

A. GMALL
B. HyperCVAD
C. Cancer and Leukemia Group B (CALGB study)
D. Standard or augmented Berlin-Frankfurt-Munster (BFM)
E. Pediatric inspired regimen
Case presentation

• Patient received HyperCVAD plus imatinib 600 mg/day achieved CR after induction (1st cycle)
• She had HLA matched sibling (younger sister), UC scheme

What is your treatment of choice for post-remission therapy?

A. Sibling allogeneic SCT
B. Continue chemotherapy
Controversies in Adult Ph+ ALL

- Philadelphia positive ALL
 - One of the worst prognosis factors
 - Role of transplantation in TKI era
 - Role of chemotherapy plus TKI without transplantation
Controversies in Adult Ph+ ALL

• In the past
 – Poorly tractable therapeutic disease
 – Associated with at least a 10% lower chance of complete remission (CR)
 – Extremely poor prognosis overall
 – Median survival of 8 months

• In TKI era
 – Tyrosine kinase inhibitor has changed the outcome and prognosis of Adult Ph+ ALL
Induction therapy

• TKI in the induction phase - Gold-standard
 – Much higher CR rates
 – Improved long-term outcome
 – Disease-free survival (DFS)/overall survival (OS)
 – Increasing the likelihood of allo-SCT

• Compared with historical controls

Controversies in Adult Ph+ ALL

<table>
<thead>
<tr>
<th>Study</th>
<th>Study group</th>
<th>Drug, dose, mg</th>
<th>N</th>
<th>CR, %</th>
<th>Transplantation rate, %</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Published studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thomas</td>
<td>MD Anderson</td>
<td>Im 400</td>
<td>20</td>
<td>93</td>
<td>50</td>
<td>75% at 20 mo</td>
</tr>
<tr>
<td>Yanada</td>
<td>JALSG</td>
<td>Im 600</td>
<td>80</td>
<td>96</td>
<td>61</td>
<td>75% at 1 year</td>
</tr>
<tr>
<td>Wassmann</td>
<td>GMALL</td>
<td>Im 4–600</td>
<td>92</td>
<td>95</td>
<td>77</td>
<td>36% (alternating schedule)</td>
</tr>
<tr>
<td>De Labarathe</td>
<td>GRAALL</td>
<td>Im 600</td>
<td>45</td>
<td>96</td>
<td>48</td>
<td>65% at 18 mo</td>
</tr>
<tr>
<td>Vignetti</td>
<td>GIMEMA</td>
<td>Im 800</td>
<td>30</td>
<td>100</td>
<td>N/A</td>
<td>74% at 12 mo</td>
</tr>
<tr>
<td>Ottman</td>
<td>GMALL</td>
<td>Im 600</td>
<td>55</td>
<td>96 (imatinib) 50 (chemo)</td>
<td>N/A</td>
<td>42% at 24 mo</td>
</tr>
<tr>
<td>Ribera</td>
<td>PETHEMA</td>
<td>Im 400</td>
<td>30</td>
<td>90</td>
<td>70</td>
<td>N/A</td>
</tr>
<tr>
<td>Bassan</td>
<td>NILG</td>
<td>Im 340/m²</td>
<td>59</td>
<td>92</td>
<td>63</td>
<td>30% at 4 y</td>
</tr>
<tr>
<td>Schultz</td>
<td>COG</td>
<td>Im 340/m²</td>
<td>92</td>
<td>Not stated</td>
<td>N/A*</td>
<td>38% at 5 y</td>
</tr>
<tr>
<td>Ravandi</td>
<td>MD Anderson</td>
<td>Das 50 bd (or 100 od)</td>
<td>35</td>
<td>94</td>
<td>N/A</td>
<td>80% (EFS) at 3 y</td>
</tr>
</tbody>
</table>

Transplantation rate, %

- 50%
- 61%
- 77%
- 48%
- N/A
- 70%
- N/A
- 70%
- N/A
- 44%
- 62%
- N/S
- 80.7%
- Median 27.1 mo

OS

- 75% at 20 mo
- 75% at 1 year
- 36% (alternating schedule)
- 43% (concurrent schedule at 2 y)
- 65% at 18 mo
- 74% at 12 mo
- 42% at 24 mo
- 30% at 4 y
- 38% at 5 y
- 80% (EFS) at 3 y
- 64% at 24 mo
- 43% at 3 y
- 62% at 2 y
- 80.7% at 10 mo
- Median 27.1 mo

Controversies in Adult Ph+ ALL

Chemotherapy +/- TKI in Elderly ALL, Overall survival

Ph Pos (n = 7) 36%
Ph Neg (n = 25) 0%
p = 0.81

Pitfall in diagnosis

• Better identified by FISH/preferably by RT-PCR
• B-ALL esp. CALLA(+) (CD10)
• In the past conventional cytogenetics
• RT-PCR
 – Type of transcript
 • p190 (e2a2) (more common)
 • p210 (b2a2, b3a2)

Conventional cytogenetic

<table>
<thead>
<tr>
<th>CALLA(+) ALL (N=34)</th>
<th>CML (N=123)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>6</td>
<td>118</td>
</tr>
<tr>
<td>Negative</td>
<td>Negative</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>No metaphase</td>
<td>No metaphase</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

PCR (+) in all cases (%): $P_{190} = 7$, $P_{210} = 4$, $P_{190,210} = 2$

FISH (+) in all 5 cases

Allogeneic BMT in Adult Ph+ ALL

- The 2 large studies conducted prospectively
- Myeloablative sibling alloHSCT much better outcome than chemo
- No RCT has been done in TKI era
 - Compared TKI vs. BMT

UK ALL XII/ECOG 2993

<table>
<thead>
<tr>
<th>Outcome by Risk Group, %</th>
<th>Donor (n = 389)</th>
<th>No Donor (n = 530)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall 5-yr survival</td>
<td>53</td>
<td>45</td>
<td>.02</td>
</tr>
<tr>
<td>□ High risk</td>
<td>40</td>
<td>36</td>
<td>.50</td>
</tr>
<tr>
<td>□ Standard risk</td>
<td>63</td>
<td>51</td>
<td>.01</td>
</tr>
<tr>
<td>10-yr relapse rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ High risk</td>
<td>39</td>
<td>62</td>
<td>< .0001</td>
</tr>
<tr>
<td>□ Standard risk</td>
<td>27</td>
<td>50</td>
<td>< .0001</td>
</tr>
</tbody>
</table>

- 5-year OS for allo BMT 53% vs 45%, (P < .02)
- High risk group – treatment related mortality
- De-intensified induction treatment

Allogeneic stem cell transplant

- Allo-SCT still remains the only truly curative option for Ph+ ALL
- Mostly for younger adult patients

UKALLXII/ECOG2993
- 4-y OS - imatinib cohort
- alloHSCT benefit to EFS (HR for EFS = 0.64, 95% CI (0.44-0.93), P = .02)
- But not OS

Randomized study of reduced-intensity chemo with imatinib

<table>
<thead>
<tr>
<th>Cycle 1 arm A</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VCR</td>
<td>2 mg/day IV</td>
<td>Day 1, 8, 15, and 22</td>
<td></td>
</tr>
<tr>
<td>DXM</td>
<td>40 mg/day PO</td>
<td>Day 1-2, 8-9, 15-16, and 22-23</td>
<td></td>
</tr>
<tr>
<td>Imatinib</td>
<td>400 mg bid PO</td>
<td>Day 1 to 28</td>
<td></td>
</tr>
<tr>
<td>Filgrastim</td>
<td>5 μg/kg/day SC/IV</td>
<td>From Day 15 to PMN recovery</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cycle 1 arm B</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VCR</td>
<td>2 mg/day IV</td>
<td>Day 4 and 11</td>
<td></td>
</tr>
<tr>
<td>DXM</td>
<td>40 mg/day PO</td>
<td>Day 1-4, and 11-14</td>
<td></td>
</tr>
<tr>
<td>DXR</td>
<td>50 mg/m²/day CIV</td>
<td>Day 4</td>
<td></td>
</tr>
<tr>
<td>CPM</td>
<td>300 mg/m²/12h IV</td>
<td>Day 1-3</td>
<td></td>
</tr>
<tr>
<td>Imatinib</td>
<td>400 mg bid PO</td>
<td>Day 1 to 14</td>
<td></td>
</tr>
<tr>
<td>Filgrastim or Peg-filgrastim</td>
<td>5 μg/kg/day SC/IV</td>
<td>From Day 15 to PMN recovery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 mg SC</td>
<td>Day 6</td>
<td></td>
</tr>
</tbody>
</table>

- Reduced-intensity of chemotherapy
- Lower early mortality and higher CR rate
- 5-year EFS and OS without difference

Role of chemotherapy plus TKI without transplantation

- Phase 2 study
- N = 35 pts
- Median follow-up of 14 months (4-37)
- Dasatinib was continued indefinitely
- Treatment related toxicities is quite high

Final Report Of CMT+Dasatinib For Ph+ ALL

- 63 pts with untreated, 9 patients with prior
- Median follow up of 48 months
- 6 relapsed, ABL mutations (4 T315I, 1 F359V, 1 V299L)

Hyper-CVAD + ponatinib vs. dasatinib

- Propensity score matching
- The 3-year EFS rates in ponatinib and dasatinib were 69% and 46%, respectively (p=0.04)
- The 3-year OS rates were 83% and 56%, respectively (p=0.03)

Hyper CVAD/Ponatinib in Ph+ ALL

- Hyper-CVAD/ponatinib
- 2-year EFS rate was 81%
- > Gr 3 toxicity in 54%
 - Thrombotic events (8%), myocardial infarction (8%), hypertension (16%) and pancreatitis (16%)

Hyper CVAD/Ponatinib in Ph+ ALL

MRD status by PCR and flow cytometry

<table>
<thead>
<tr>
<th>Parameter</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR *</td>
<td>36/36 (100)</td>
</tr>
<tr>
<td>CCyR **</td>
<td>32/32 (100)</td>
</tr>
<tr>
<td>MMR</td>
<td>35/37 (95)</td>
</tr>
<tr>
<td>CMR</td>
<td>29/37 (78)</td>
</tr>
<tr>
<td>Flow negativity ***</td>
<td>35/36 (97)</td>
</tr>
<tr>
<td>Early death</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

Controversies in Adult Ph+ ALL

- Philadelphia positive ALL
 - One of the worst prognosis factors
 - Not anymore with TKI treatment
 - Role of transplantation in TKI era
 - Yes if applicable
 - Role of chemotherapy plus TKI without transplantation
 - No but reasonable in some circumstances which transplantation is not applicable, require more study
Controversies in Adult Ph+ ALL

- Philadelphia positive ALL
 - One of the worst prognosis factors
 - Not sure with TKI treatment
 - Role of transplantation in TKI era
 - Yes but need prospective RCT
 - Role of chemotherapy plus TKI without transplantation
 - Yes if transplantation is not applicable
 - DMR and MRD needed
Monoclonal Ab and Immuno-oncology in ALL
ALL treatment paradigm

Diagnosis

High risk
 - MRD positive: Stem cell transplantation

Standard risk
 - Not CR: Chemotherapy
 - MRD negative: Chemotherapy
Thank you for your attention